Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; : e16330, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38725388

RESUMO

PREMISE: Increasingly complete phylogenies underpin studies in systematics, ecology, and evolution. Myrteae (Myrtaceae), with ~2700 species, is a key component of the exceptionally diverse Neotropical flora, but given its complicated taxonomy, automated assembling of molecular supermatrices from public databases often lead to unreliable topologies due to poor species identification. METHODS: Here, we build a taxonomically verified molecular supermatrix of Neotropical Myrteae by assembling 3909 published and 1004 unpublished sequences from two nuclear and seven plastid molecular markers. We infer a time-calibrated phylogenetic tree that covers 712 species of Myrteae (~28% of the total diversity in the clade) and evaluate geographic and taxonomic gaps in sampling. RESULTS: The tree inferred from the fully concatenated matrix mostly reflects the topology of the plastid data set and there is a moderate to strong incongruence between trees inferred from nuclear and plastid partitions. Large, species-rich genera are still the poorest sampled within the group. Eastern South America is the best-represented area in proportion to its species diversity, while Western Amazon, Mesoamerica, and the Caribbean are the least represented. CONCLUSIONS: We provide a time-calibrated tree that can be more reliably used to address finer-scale eco-evolutionary questions that involve this group in the Neotropics. Gaps to be filled by future studies include improving representation of taxa and areas that remain poorly sampled, investigating causes of conflict between nuclear and plastid partitions, and the role of hybridization and incomplete lineage sorting in relationships that are poorly supported.

2.
Front Plant Sci ; 13: 981884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275536

RESUMO

The subtribe Eugeniinae comprises of two genera, Eugenia (ca. 1,100 species) and Myrcianthes (ca. 40 species). Eugenia is the largest genus of neotropical Myrtaceae and its latest classification proposes 11 sections. This study describes the seed anatomy of forty-one species of Eugeniinae in order to provide possible diagnostic characteristics. Following standard anatomical techniques, flower buds, flowers, and fruits were processed and analyzed using microtome sections and light microscopy. The phylogeny used the regions ITS, rpl16, psbA-trnH, trnL-rpl32, and trnQ-rps16, following recent studies in the group. Ancestral character reconstruction uncovered that: (1) the ancestral ovule in Eugeniinae was campylotropous (98.9% probability), bitegmic (98.5% probability), and unitegmic ovules arose on more than one lineage independently within Eugenia; (2) the pachychalazal seed-coat appeared with a 92% probability of being the ancestral type; (3) non-lignified seed-coat (24,5% probability) and aerenchymatous mesotesta (45.8% probability) are diagnostic characters in Myrcianthes pungens (aerenchymatous mesotesta present in the developing seed-coat) and in the species of E. sect. Pseudeugenia until the species of E. sect. Schizocalomyrtus and it is the type of seed-coat that predominates in most basal sections on the tree; (4) the partial sclerification (only in the exotesta-exotestal seed-coat) is mainly observed in species of E. sect. Excelsae, E. sect. Jossinia (group X), and E. sect. Racemosae (22.2% probability); (5) and in the species of the recent lineages of Eugenia, with a probability of 27.2%, predominate the exomesotestal or testal construction of the seed-coat [character observed in almost all species analyzed of E. sect. Jossinia (group Y) and E. sect. Umbellatae]. A dehiscent fruit is considered as a plesiomorphic state in Myrtaceae; the ancestor of this family had seeds with a completely sclerified testa, and the other testa types described for the current species with dehiscent and indehiscent fruits are simplified versions of this ancestral type. Perhaps, this means that the sclerified layers in the seed-coat have remained in whole or in part as a plesiomorphic condition for taxa with a capsule and bacca. Maintaining the plesiomorphic condition may have represented a selective advantage at some point in the evolutionary history of the family and its groups.

3.
Mol Phylogenet Evol ; 139: 106553, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31288103

RESUMO

Eugenia has a pantropical distribution and comprises ca. 1000 species found mostly in the Neotropics. Recent DNA based phylogenies show that unusual flower morphology of 'eugenioid' collections, e.g. fused calices that open by tearing, consistently emerged within Eugenia. These results emphasize a demand to revaluate flower morphology in a phylogenetic context within the genus. A reassessment of calyx fusion in Eugenia and traditionally related genera is here focused on clarification of the systematic relevance of this apparently recurrent characteristic. Twenty-four Eugenia species with some level of calyx fusion in the bud were newly used (one nuclear and four plastid markers) in conjunction with a representative sample of previously sequenced species to recover a time-calibrated Eugenia phylogeny of 86 accessions. Development of the fused calyx was analysed using scanning electron microscopy, differing patterns were re-coded and subsequently phylogenetic character reconstruction was performed. Eugenia was recovered as monophyletic including the traditionally segregated genera Calycorectes and Catinga. Ancestral character reconstruction uncovered free calyx lobes as the ancestral condition. Five development patterns leading to calyx fusion are reported in Eugenia including species with apparently six petals, which contrast with the standard tetramerous flowers. This condition is interpreted as the petaloid pattern, where two external fused calyx lobes cover the bud while two internal calyx lobes are free and petaloid. The fused calyx condition is homoplastic and evolved independently, several times in Eugenia, as did the different development patterns. Data presented here show that systematic incongruence resulting from multiple, independent origins of the fused calyx in Eugenia is further aggravated by an inability to distinguish parallelism and convergence within the recovered patterns.


Assuntos
Evolução Biológica , Eugenia/anatomia & histologia , Flores/anatomia & histologia , Animais , Sequência de Bases , Biodiversidade , Calibragem , Flores/genética , Filogenia , Fatores de Tempo
4.
PhytoKeys ; (61): 73-80, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27081351

RESUMO

A new section of Eugenia (Myrtaceae) is described, segregate from Eugenia sect. Phyllocalyx. Phylogenetic studies suggest that Eugenia sect. Phyllocalyx as traditionally delimited is paraphyletic. To maintain the monophyly of each of the sections in Eugenia s.l., we herein opt to circumscribe a new section and recognize six taxa in sect. Speciosae, which has a distribution mostly in southeastern Brazil and northern South America. Nomenclatural notes are made and a taxonomic key is provided for the species of the section.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA